Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(15)2022 07 29.
Article in English | MEDLINE | ID: covidwho-1969240

ABSTRACT

At present, COVID-19 is still spreading, and its transmission patterns and the main factors that affect transmission behavior still need to be thoroughly explored. To this end, this study collected the cumulative confirmed cases of COVID-19 in China by 8 April 2020. Firstly, the spatial characteristics of the COVID-19 transmission were investigated by the spatial autocorrelation method. Then, the factors affecting the COVID-19 incidence rates were analyzed by the generalized linear mixed effect model (GLMMs) and geographically weighted regression model (GWR). Finally, the geological detector (GeoDetector) was introduced to explore the influence of interactive effects between factors on the COVID-19 incidence rates. The results showed that: (1) COVID-19 had obvious spatial aggregation. (2) The control measures had the largest impact on the COVID-19 incidence rates, which can explain the difference of 34.2% in the COVID-19 incidence rates, while meteorological factors and pollutant factors can only explain the difference of 1% in the COVID-19 incidence rates. It explains that some of the literature overestimates the impact of meteorological factors on the spread of the epidemic. (3) The influence of meteorological factors was stronger than that of air pollution factors, and the interactive effects between factors were stronger than their individual effects. The interaction between relative humidity and NO2 was stronger. The results of this study will provide a reference for further prevention and control of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , China/epidemiology , Humans , Meteorological Concepts , Particulate Matter/analysis , Spatial Regression
2.
Land ; 10(6):599, 2021.
Article in English | MDPI | ID: covidwho-1259531

ABSTRACT

Coronavirus disease 2019 (COVID-19) propagation in 2019 posed serious threats and challenges to human public health and safety. Currently, COVID-19 is still not effectively controlled in certain countries and regions. This study combines the traditional susceptible-exposed-infectious-recovered (SEIR) model, system dynamics (SD) model, and cellular automata (CA) model to construct a spatiotemporal dynamics pandemic model (SDPM). The SDPM is used to dynamically depict the spatiotemporal diffusion and outbreak of COVID-19 through research on the relationship between epidemic spread and regional development. The results show that: (1) There is a positive correlation between regional development and epidemic spread. The more developed the regional economy, especially in areas with short-range population migration from Hubei Province, the more severe the epidemic spread;and (2) The spatial isolation and control measures adopted by the government can effectively prevent the COVID-19 spread. The results explore the relationship between COVID-19 spread and regional economic development by studying the spatial and temporal transmission characteristics of COVID-19, and provide a scientific reference for the government to formulate reasonable response measures.

3.
Chaos Solitons Fractals ; 140: 110214, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-720455

ABSTRACT

The COVID-19 outbreak in late December 2019 is still spreading rapidly in many countries and regions around the world. It is thus urgent to predict the development and spread of the epidemic. In this paper, we have developed a forecasting model of COVID-19 by using a deep learning method with rolling update mechanism based on the epidemical data provided by Johns Hopkins University. First, as traditional epidemical models use the accumulative confirmed cases for training, it can only predict a rising trend of the epidemic and cannot predict when the epidemic will decline or end, an improved model is built based on long short-term memory (LSTM) with daily confirmed cases training set. Second, considering the existing forecasting model based on LSTM can only predict the epidemic trend within the next 30 days accurately, the rolling update mechanism is embedded with LSTM for long-term projections. Third, by introducing Diffusion Index (DI), the effectiveness of preventive measures like social isolation and lockdown on the spread of COVID-19 is analyzed in our novel research. The trends of the epidemic in 150 days ahead are modeled for Russia, Peru and Iran, three countries on different continents. Under our estimation, the current epidemic in Peru is predicted to continue until November 2020. The number of positive cases per day in Iran is expected to fall below 1000 by mid-November, with a gradual downward trend expected after several smaller peaks from July to September, while there will still be more than 2000 increase by early December in Russia. Moreover, our study highlights the importance of preventive measures which have been taken by the government, which shows that the strict controlment can significantly reduce the spread of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL